Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Article in English | MEDLINE | ID: covidwho-2050395

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins , Antibodies, Viral , Membrane Glycoproteins
2.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1361670

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Subject(s)
Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , B-Lymphocytes , BNT162 Vaccine , Humans , Immunogenicity, Vaccine , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Survivors
3.
Lancet Microbe ; 2(6): e240-e249, 2021 06.
Article in English | MEDLINE | ID: covidwho-1155679

ABSTRACT

BACKGROUND: Studies have found different waning rates of neutralising antibodies compared with binding antibodies against SARS-CoV-2. The impact of neutralising antibody waning rate at the individual patient level on the longevity of immunity remains unknown. We aimed to investigate the peak levels and dynamics of neutralising antibody waning and IgG avidity maturation over time, and correlate this with clinical parameters, cytokines, and T-cell responses. METHODS: We did a longitudinal study of patients who had recovered from COVID-19 up to day 180 post-symptom onset by monitoring changes in neutralising antibody levels using a previously validated surrogate virus neutralisation test. Changes in antibody avidities and other immune markers at different convalescent stages were determined and correlated with clinical features. Using a machine learning algorithm, temporal change in neutralising antibody levels was classified into five groups and used to predict the longevity of neutralising antibody-mediated immunity. FINDINGS: We approached 517 patients for participation in the study, of whom 288 consented for outpatient follow-up and collection of serial blood samples. 164 patients were followed up and had adequate blood samples collected for analysis, with a total of 546 serum samples collected, including 128 blood samples taken up to 180 days post-symptom onset. We identified five distinctive patterns of neutralising antibody dynamics as follows: negative, individuals who did not, at our intervals of sampling, develop neutralising antibodies at the 30% inhibition level (19 [12%] of 164 patients); rapid waning, individuals who had varying levels of neutralising antibodies from around 20 days after symptom onset, but seroreverted in less than 180 days (44 [27%] of 164 patients); slow waning, individuals who remained neutralising antibody-positive at 180 days post-symptom onset (46 [28%] of 164 patients); persistent, although with varying peak neutralising antibody levels, these individuals had minimal neutralising antibody decay (52 [32%] of 164 patients); and delayed response, a small group that showed an unexpected increase of neutralising antibodies during late convalescence (at 90 or 180 days after symptom onset; three [2%] of 164 patients). Persistence of neutralising antibodies was associated with disease severity and sustained level of pro-inflammatory cytokines, chemokines, and growth factors. By contrast, T-cell responses were similar among the different neutralising antibody dynamics groups. On the basis of the different decay dynamics, we established a prediction algorithm that revealed a wide range of neutralising antibody longevity, varying from around 40 days to many decades. INTERPRETATION: Neutralising antibody response dynamics in patients who have recovered from COVID-19 vary greatly, and prediction of immune longevity can only be accurately determined at the individual level. Our findings emphasise the importance of public health and social measures in the ongoing pandemic outbreak response, and might have implications for longevity of immunity after vaccination. FUNDING: National Medical Research Council, Biomedical Research Council, and A*STAR, Singapore.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Humans , Longitudinal Studies
4.
Nat Biotechnol ; 38(9): 1073-1078, 2020 09.
Article in English | MEDLINE | ID: covidwho-1023948

ABSTRACT

A robust serological test to detect neutralizing antibodies to SARS-CoV-2 is urgently needed to determine not only the infection rate, herd immunity and predicted humoral protection, but also vaccine efficacy during clinical trials and after large-scale vaccination. The current gold standard is the conventional virus neutralization test requiring live pathogen and a biosafety level 3 laboratory. Here, we report a SARS-CoV-2 surrogate virus neutralization test that detects total immunodominant neutralizing antibodies targeting the viral spike (S) protein receptor-binding domain in an isotype- and species-independent manner. Our simple and rapid test is based on antibody-mediated blockage of the interaction between the angiotensin-converting enzyme 2 (ACE2) receptor protein and the receptor-binding domain. The test, which has been validated with two cohorts of patients with COVID-19 in two different countries, achieves 99.93% specificity and 95-100% sensitivity, and differentiates antibody responses to several human coronaviruses. The surrogate virus neutralization test does not require biosafety level 3 containment, making it broadly accessible to the wider community for both research and clinical applications.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Antibodies/immunology , Antibodies/pharmacology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Neutralization Tests , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
Emerg Microbes Infect ; 9(1): 1497-1505, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-595010

ABSTRACT

In response to the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, multiple diagnostic tests are required for acute disease diagnosis, contact tracing, monitoring asymptomatic infection rates and assessing herd immunity. While PCR remains the frontline test of choice in the acute diagnostic setting, serological tests are urgently needed. Unlike PCR tests which are highly specific, cross-reactivity is a major challenge for COVID-19 antibody tests considering there are six other coronaviruses known to infect humans. SARS-CoV is genetically related to SARS-CoV-2 sharing approximately 80% sequence identity and both belong to the species SARS related coronavirus in the genus Betacoronavirus of family Coronaviridae. We developed and compared the performance of four different serological tests to comprehensively assess the cross-reactivity between COVID-19 and SARS patient sera. There is significant cross-reactivity when N protein of either virus is used. The S1 or RBD regions from the spike (S) protein offers better specificity. Amongst the different platforms, capture ELISA performed best. We found that SARS survivors all have significant levels of antibodies remaining in their blood 17 years after infection. Anti-N antibodies waned more than anti-RBD antibodies, and the latter is known to play a more important role in providing protective immunity.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Severe Acute Respiratory Syndrome/diagnosis , Severe acute respiratory syndrome-related coronavirus/immunology , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Nucleocapsid Proteins , Cross Reactions , Diagnosis, Differential , Enzyme-Linked Immunosorbent Assay/methods , HEK293 Cells , Humans , Immunoprecipitation , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Protein Domains/immunology , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
6.
Emerg Microbes Infect ; 9(1): 900-902, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-209985

ABSTRACT

Despite initial findings indicating that SARS-CoV and SARS-CoV-2 are genetically related belonging to the same virus species and that the two viruses used the same entry receptor, angiotensin-converting enzyme 2 (ACE2), our data demonstrated that there is no detectable cross-neutralization by SARS patient sera against SARS-CoV-2. We also found that there are significant levels of neutralizing antibodies in recovered SARS patients 9-17 years after initial infection. These findings will be of significant use in guiding the development of serologic tests, formulating convalescent plasma therapy strategies, and assessing the longevity of protective immunity for SARS-related coronaviruses in general as well as vaccine efficacy.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19 , Coronavirus Infections/therapy , Humans , Immunization, Passive/standards , Pandemics , SARS-CoV-2 , Time Factors , Viral Vaccines/standards , COVID-19 Serotherapy
7.
Lancet ; 395(10229): 1039-1046, 2020 03 28.
Article in English | MEDLINE | ID: covidwho-8692

ABSTRACT

BACKGROUND: Three clusters of coronavirus disease 2019 (COVID-19) linked to a tour group from China, a company conference, and a church were identified in Singapore in February, 2020. METHODS: We gathered epidemiological and clinical data from individuals with confirmed COVID-19, via interviews and inpatient medical records, and we did field investigations to assess interactions and possible modes of transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Open source reports were obtained for overseas cases. We reported the median (IQR) incubation period of SARS-CoV-2. FINDINGS: As of Feb 15, 2020, 36 cases of COVID-19 were linked epidemiologically to the first three clusters of circumscribed local transmission in Singapore. 425 close contacts were quarantined. Direct or prolonged close contact was reported among affected individuals, although indirect transmission (eg, via fomites and shared food) could not be excluded. The median incubation period of SARS-CoV-2 was 4 days (IQR 3-6). The serial interval between transmission pairs ranged between 3 days and 8 days. INTERPRETATION: SARS-CoV-2 is transmissible in community settings, and local clusters of COVID-19 are expected in countries with high travel volume from China before the lockdown of Wuhan and institution of travel restrictions. Enhanced surveillance and contact tracing is essential to minimise the risk of widespread transmission in the community. FUNDING: None.


Subject(s)
Contact Tracing , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Population Surveillance , Adult , Betacoronavirus , COVID-19 , Civil Defense , Congresses as Topic , Coronavirus Infections/transmission , Female , Humans , Infection Control , Male , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Residence Characteristics , SARS-CoV-2 , Singapore , Travel
SELECTION OF CITATIONS
SEARCH DETAIL